Search results for "solid liquid suspension"

showing 6 items of 6 documents

Suspension phenomena in solid-liquid agitated systems

2011

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti Chimicisolid liquid suspension stirred tanks mixing computational fluid dynamics
researchProduct

CFD MODELLING OF PARTICLE SUSPENSION IN STIRRED TANKS

2011

Mixing of solid particles into liquids in mechanically agitated vessels is a topic of primary importance for several industrial applications. A great deal of research efforts has been devoted so far to the assessment of the minimum impeller speed (Njs) able to guarantee that all particles are suspended. Conversely, only little attention has been paid to the evaluation of the amount of solid particles that are suspended at impeller speeds N lower than Njs, despite the fact that in a number of industrial applications agitation speeds smaller than Njs are actually adopted [1,2]. The present work deals with dense solid-liquid partial suspensions in baffled stirred tanks and particularly focuses…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciStirred tankMulti Fluid ModelSettore ING-IND/25 - Impianti ChimiciMultiphase FlowSolid liquid suspensionComputational Fluid Dynamic
researchProduct

CFD prediction of solid particle distribution in baffled stirred vessels under partial to complete suspension conditions

2013

Solid-liquid mixing within tanks agitated by stirrers can be easily encountered in many industrial processes. It is common to find an industrial tank operating at an impeller speed N lower than the minimum agitation speed for the suspension of solid particles: under such conditions the distribution of solid-particles is very far from being homogeneous and very significant concentration gradients exist. The present work evaluates the capability of a Computational Fluid Dynamics (CFD) model to reliably predict the particle distribution throughout the tank under either partial or complete suspension conditions. A flat bottomed baffled tank stirred by a Rushton turbine was investigated. Both tr…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicilcsh:Computer engineering. Computer hardwareSettore ING-IND/25 - Impianti Chimicilcsh:TP155-156lcsh:TK7885-7895lcsh:Chemical engineeringMixing Solid liquid suspensions CFDSettore ING-IND/19 - Impianti NucleariComputational Fluid Dynamics Baffled Stirred Vessel Solid Liquid Suspension
researchProduct

ASSESSMENT OF THE MINIMUM POWER REQUIREMENTS FOR COMPLETE SUSPENSION IN TOP-COVERED UNBAFFLED STIRRED TANKS

2012

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciComplete suspension power number unbaffled stirred tanks solid liquid suspension mixing
researchProduct

Influence of drag and turbulence modelling on CFD predictions of solid liquid suspensions in stirred vessels

2014

Abstract Suspensions of solid particles into liquids within industrial stirred tanks are frequently carried out at an impeller speed lower than the minimum required for complete suspension conditions. This choice allows power savings which usually overcome the drawback of a smaller particle-liquid interfacial area. Despite this attractive economical perspective, only limited attention has been paid so far to the modelling of the partial suspension regime. In the present work two different baffled tanks stirred by Rushton turbines were simulated by employing the Eulerian-Eulerian Multi Fluid Model (MFM) along with either the Sliding Grid algorithm (transient simulations) or the Multiple Refe…

Computational Fluid Dynamics (CFD)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEngineeringWork (thermodynamics)Steady statebusiness.industryTurbulenceSettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringMultiphase flowTurbulence modelGeneral ChemistryMechanicsComputational fluid dynamicsImpellerStirred tankDragControl theorySettore ING-IND/06 - FluidodinamicaSolid liquid suspensionMultiphase flowSuspension (vehicle)businessComputational Fluid Dynamics (CFD); Stirred tank; Solid liquid suspension; Drag force; Turbulence model; Multiphase flowDrag forceChemical Engineering Research and Design
researchProduct

Solid–Liquid Suspensions in Top-Covered Unbaffled Vessels: Influence of Particle Size, Liquid Viscosity, Impeller Size, and Clearance

2014

Particle suspension in liquids is a unit operation commonly encountered in the process industry. Although it is usually carried out in baffled stirred tanks, there are some specific applications where the presence of baffles may be undesirable. In the present work solid-liquid suspensions are investigated in a radially stirred unbaffled tank provided with a top cover. The minimum impeller speed at which all solid particles get suspended (Njs) and the relevant power requirements (Pjs) are assessed. The dependence of these two parameters on physical properties (liquid viscosity, particle concentration, and size) and system geometrical configurations (impeller diameter and clearance) is invest…

Work (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceChromatographyGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciLiquid viscosityBaffleGeneral ChemistryMechanicsUnit operationSOLID-LIQUID SUSPENSIONIndustrial and Manufacturing EngineeringImpellerSOLID-LIQUID MIXINGParticlesolid liquid suspension stirred tank Njs unbaffled vessel complete suspension power requirementsParticle sizeUNBAFFLED STIRRED VESSELSSolid liquid
researchProduct